This educational activity consists of a supplement and seven (7) study questions. The participant should, in order, read the learning objectives contained at the beginning of this supplement, read the supplement, answer all questions in the post test, and complete the Activity Evaluation/Credit Request form. To receive credit for this activity, please follow the instructions provided on the post test and Activity Evaluation/Credit Request form. This educational activity should take a maximum of 1.5 hours to complete.

ACTIVITY DESCRIPTION

After 25 years living with diabetes, up to 83% of people with nonproliferative diabetic retinopathy will progress to proliferative diabetic retinopathy, which is vision threatening. Nonproliferative diabetic retinopathy can also progress to vision-threatening, center-involved diabetic macular edema. Until recently, treatment options for nonproliferative diabetic retinopathy were limited to laser photocoagulation or ranibizumab anti–vascular endothelial growth factor injection if diabetic macular edema was also present. Ranibizumab and, as of recently, aflibercept are now approved to treat all forms of diabetic retinopathy, with or without diabetic macular edema. Cumulating evidence shows that approximately 40% of patients with untreated nonproliferative diabetic retinopathy will develop proliferative diabetic retinopathy or center-involved diabetic macular edema within 1 year, but treatment at this stage of disease can drastically reduce the risk. Whether patients benefit more from laser or from anti–vascular endothelial growth factor treatment depends on factors unique to individuals, and communication of modifiable risk factors and discussion of individual patient needs is critical for sight preservation. The desired results of this activity are for retina specialists to gain the knowledge and competence needed to help patients with nonproliferative diabetic retinopathy prevent loss of vision from proliferative diabetic retinopathy and diabetic macular edema.

TARGET AUDIENCE

This educational activity is intended for retina specialists and other ophthalmologists caring for patients with diabetic retinopathy.

LEARNING OBJECTIVES

Upon completion of this activity, participants will be better able to:

- Analyze the evidence supporting treatment for preventing vision-threatening outcomes in diabetic retinopathy
- Examine clinical trial data supporting treatment of nonproliferative diabetic retinopathy to prevent diabetic retinopathy progression and diabetic macular edema
- Design treatment plans for diabetic retinopathy that consider individual patient factors
- Identify information that should be shared with patients with diabetic retinopathy to help them prevent vision loss

ACCREDITATION STATEMENT

This activity has been planned and implemented in accordance with the accreditation requirements and policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint providership of New York Eye and Ear Infirmary of Mount Sinai and MedEdicus LLC. The New York Eye and Ear Infirmary of Mount Sinai is accredited by the ACCME to provide continuing medical education for physicians.

In July 2013, the Accreditation Council for Continuing Medical Education (ACCME) awarded New York Eye and Ear Infirmary of Mount Sinai “Accreditation with Commendation,” for six years as a provider of continuing medical education for physicians, the highest accreditation status awarded by the ACCME.

AMA CREDIT DESIGNATION STATEMENT

The New York Eye and Ear Infirmary of Mount Sinai designates this enduring material for a maximum of 1.5 AMA PRA Category 1 Credits™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

GRANTOR STATEMENT

This continuing medical education activity is supported through an unrestricted educational grant from Regeneron Pharmaceuticals, Inc.

DISCLOSURE POLICY STATEMENT

It is the policy of New York Eye and Ear Infirmary of Mount Sinai that the faculty and anyone in a position to control activity content disclose any real or apparent conflicts of interest relating to the topics of this educational activity, and also disclose discussions of unlabeled/unapproved uses of drugs or devices during their presentation(s). New York Eye and Ear Infirmary of Mount Sinai has established policies in place that will identify and resolve all conflicts of interest prior to this educational activity. Full disclosure of faculty/planners and their commercial relationships, if any, follows.

DISCLOSURES

Nancy M. Holekamp, MD, had a financial agreement or affiliation during the past year with the following commercial interests in the forms of Receipt of Intellectual Rights/Patent Holder: Katalyst Healthcares & Life Sciences; Consultant/Advisory Board: Allegro Ophthalmics, LLC; Allergan; BioTime, Inc; Clevsise Biomedical, Inc; Gemini Therapeutics; Genentech, Inc; Novartis Pharmaceuticals Corporation; and Regenron Pharmaceuticals, Inc; Contracted Research: Alimera Sciences; and Genentech, Inc; Honoraria from promotional, advertising or non-CME services received directly from commercial interests or their Agents (eg. Speakers Bureaus): Alimera Sciences; Allergan; Genentec, Inc; Regeneron Pharmaceuticals, Inc; and Spark; Ownership Interest (Stock options, or other holdings, excluding diversified mutual funds): Katalyst Healthcares & Life Sciences.

Jachly N. Kovach, MD, has no relevant commercial relationships to disclose.

Eleonora Lad, MD, PhD, had a financial agreement or affiliation during the past year with the following commercial interests in the forms of Consultant/Advisory Board: Apellis Pharmaceuticals; Hoffinan-La Roche Ltd; Galmedix Therapeutics, Inc; and Novartis Pharmaceuticals Corporation; Contracted Research: Apellis Pharmaceuticals; Hoffinan-La Roche Ltd; and Novartis Pharmaceuticals Corporation.

Jennifer I. Lim, MD, had a financial agreement or affiliation during the last year with the following commercial interests in the forms of Consultant/Advisory Board: EyePoint Pharmaceuticals; Genentech, Inc; and Kodaki Sciences Inc; Contracted Research: Chengdu Kanghong Pharmaceuticals Group Co, Ltd; Clearance Biomedical, Inc; Genentech, Inc; Janssen Global Services, LLC; Ohr Pharmaceutical; Regenron Pharmaceuticals, Inc; and Second Sight: Honoraria from promotional, advertising or non-CME services received directly from commercial interests or their Agents (eg. Speakers Bureaus): Genentech, Inc; Other (Data Monitoring Committee Board): Opthea; Quark; and Santen Inc.

NEW YORK EYE AND EAR INFIRMARY OF MOUNT SINAI PEER REVIEW DISCLOSURE

Gennady Landa, MD, has no relevant commercial relationships to disclose.

EDITORIAL SUPPORT DISCLOSURES

Erika Langsfield, PhD; Cynthia Tornaillyay, RD, MBA, CHCP; Kimberly Corbin, CHCP; Barbara Aubel; and Michelle Ong have no relevant commercial relationships to disclose.

DISCLOSURE ATTESTATION

The contributing physicians listed above have attested to the following:

1) that the relationships/affiliations noted will not bias or otherwise influence their involvement in this activity;
2) that practice recommendations given relevant to the companies with whom they have relationships/affiliations will be supported by the best available evidence or, absent evidence, will be consistent with generally accepted medical practice; and
3) that all reasonable clinical alternatives will be discussed when making practice recommendations.

OFF-LABEL DISCUSSION

This CME activity includes discussion of unlabeled and/or investigative uses of drugs. Please refer to the official prescribing information for each drug discussed in this activity for FDA-approved dosing, indications, and warnings.

NEW YORK EYE AND EAR INFIRMARY OF MOUNT SINAI PRIVACY & CONFIDENTIALITY POLICIES

https://www.nyee.edu/education/cme

CME PROVIDER CONTACT INFORMATION

For questions about this activity, call 212-870-8127.

TO OBTAIN AMA PRA CATEGORY 1 CREDIT™

To obtain AMA PRA Category 1 Credit™ for this activity, read the material in its entirety and consult referenced sources as necessary. Please take this post test and evaluation online by going to https://tinyurl.com/preventvisionloss. Upon passing, you will receive your certificate immediately. You must score 70% or higher to receive credit for this activity, and may take the test up to 2 times. Upon registering and successfully completing the post test, your certificate will be made available online and you can print it or file it.

DISCLAIMER

The views and opinions expressed in this educational activity are those of the faculty and do not necessarily represent the views of New York Eye and Ear Infirmary of Mount Sinai; MedEdicus LLC; Regenron Pharmaceuticals, Inc; EyeNet; or the American Academy of Ophthalmology.

This CME activity is copyrighted to MedEdicus LLC ©2019. All rights reserved. 184
INTRODUCTION

The rapidly rising incidence of diabetes in the United States has reached epidemic proportions. As of 2019, an estimated 30.3 million people in the United States are living with diabetes, of which 7.2 million are undiagnosed. Another 84.1 million people—excluding 48.3% of adults aged ≥ 65 years—have an elevated fasting glucose or HbA1c, putting them at high risk of developing diabetes. By 2030, the prevalence of diabetes in the United States is expected to reach approximately 42 million. Ocular complications that can result from uncontrolled diabetes are the leading cause of blindness among working-age adults: by 2030, it is estimated that more than 6 million people with diabetes will have some degree of visual impairment. Diabetic retinopathy (DR), a precursor to more severe, vision-threatening manifestations of diabetic eye disease, is estimated to affect approximately one-third of adults with diabetes aged > 40 years in the United States, predominantly blacks and Hispanics. Identifying patients at high risk of vision loss is a pressing public health issue. After living with diabetes for 25 years, > 80% of patients will develop DR. Many of these patients are at high risk of progression to sight-threatening proliferative DR (PDR) or center-involving diabetic macular edema (CI-DME). An often-unappreciated consequence of vision loss is reduced quality of life. For patients who are still working or caring for others, loss of vision can be devastating. In a recent cross-sectional study conducted by the Centers for Disease Control and Prevention, visual impairment was associated with life dissatisfaction (odds ratio [OR] 2.06; 95% confidence interval, 1.80-2.35), mentally unhealthy days (OR 1.84; 95% confidence interval, 1.66-2.05), activity limitation days (OR 1.94; 95% confidence interval, 1.71-2.20). Until recently, the only treatment option for patients with DR was laser photocoagulation, but several clinical trials have resulted in the approval of both aflibercept and ranibizumab anti–vascular endothelial growth factor (VEGF) intravitreal injections for all forms of DR in the presence or absence of DME. Aflibercept has also recently been evaluated for its ability to prevent progression to PDR and CI-DME.

NATURAL HISTORY OF DIABETIC RETINOPATHY

Recent studies have confirmed earlier observations of inevitable progression of DR in a subset of eyes. In the 1991 Early Treatment Diabetic Retinopathy Study (ETDRS), 26% of patients with moderately severe nonproliferative DR (NPDR) and 52% of patients with severe NPDR at baseline progressed to PDR within 1 year (Figure 1). At the recent Angiogenesis, Exudation, and Degeneration 2019 meeting, Charles C. Wykoff, MD, PhD, presented the 52-week results from the PANORAMA trial, the first prospective trial to investigate if anti-VEGF therapy can prevent PDR or CI-DME in patients with moderately severe or severe NPDR. The 1-year data from PANORAMA showed a similar trend to ETDRS in the sham arm. In PANORAMA, 26% of participants with moderately severe to severe NPDR at baseline who were randomized to sham developed PDR or CI-DME within 24 weeks. At 52 weeks, this incidence increased to 41%.

PANEL DISCUSSION: REAL-WORLD PROGRESSION OF DIABETIC RETINOPATHY

Dr Holekamp: Do the results of ETDRS and the PANORAMA natural history arm align with what you have seen in your practices?

Dr Lim: Yes, they do. The results also beg the question: Should we treat everyone with moderately severe or severe NPDR within the first 6 months or the first year?

Dr Kovach: Yes, and there are modifiable lifestyle risk factors that can affect the rate of progression, including blood sugar, blood pressure, and body mass index. The option to
Evolution in the treatment of diabetic retinopathy

Treat patients with DR earlier in the disease process and thereby prevent progression and associated vision loss would be life changing for these working-age patients.

Dr Lad: The findings from ETDRS and PANORAMA on progression of DR are indeed consistent with what I see in my academic practice. They have reinforced my belief that early intervention, either via aggressive blood glucose control and anti-VEGF injections or both, is key in managing moderate-to-severe DR.

Dr Holekamp: It is interesting to see that despite a time gap of nearly 30 years, the PANORAMA study echoes the results of ETDRS regarding progression of disease at various levels of DR; the results of the 2 studies are amazingly consistent.

Panel Discussion: Current practices for treating diabetic retinopathy

Dr Holekamp: The aforementioned studies provide compelling evidence for earlier treatment of DR, yet in the latest Preferences and Trends survey of retina specialists, many respondents reported that they have not changed their practices according to the results of Protocol S, and few treat PDR with anti-VEGF therapy alone to regress retinopathy and prevent progression.

How do you currently treat NPDR and PDR?

Dr Lad: For me, the choice of treatment depends on the patient’s VA. For a patient with PDR but 20/20 vision, I recommend combination treatment of PRP because injections carry a small risk of endophthalmitis, which can permanently affect VA. For patients with worse vision, I recommend combination treatment of PRP and anti-VEGF injections. I have also noticed that some patients with type 1 diabetes are more sensitive to PRP owing to photosensitivity and pain. For these patients, I recommend combination treatment to minimize the number of PRP sessions. Cost and insurance coverage are also important considerations that factor...
Table 1. Eyes With a ≥ 2-Step Improvement in DR in the Diabetic Retinopathy Clinical Research Network Protocol T Study18

<table>
<thead>
<tr>
<th>Eyes With NPDR at Baseline</th>
<th>Eyes With PDR at Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>n*</td>
<td>Improvement at 1 Year (95% CI), %</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Afiblercept</td>
<td>167</td>
</tr>
<tr>
<td>Bevacizumab</td>
<td>147</td>
</tr>
<tr>
<td>Ranibizumab</td>
<td>163</td>
</tr>
</tbody>
</table>

Pairwise treatment group comparison (adjusted 95% CI)†

	Ranibizumab vs bevacizumab	Afiblercept vs bevacizumab	Afiblercept vs ranibizumab	
	11.7 (2.9–20.6)	P = .004	3.1 (-3.3 to 9.5)	P = .85
			50.4 (26.8-74.0)	P = .001
			35.9 (8.1-65.6)	P = .01
	2.9 (-5.7 to 11.4)	P = .51	0.7 (-6.4 to 7.7)	P = .85
			30.0 (4.4-55.6)	P = .02
			31.4 (-6.8 to 63.4)	P = .06
	8.9 (1.7-16.1)	P = .01	2.4 (-4.0 to 8.7)	P = .85
			20.4 (-3.1 to 44.0)	P = .09
			4.5 (-20.5 to 29.4)	P = .73

Abbreviations: CI, confidence interval; DR, diabetic retinopathy; NPDR, nonproliferative diabetic retinopathy; PDR, proliferative diabetic retinopathy.

* Eyes that were evaluable for improvement at baseline (ie, excluding eyes with baseline DR severity level ≤ 20 or level 60).

† Difference in percentage with improvement. Pairwise comparisons were performed using binomial regression, with adjustment for categorical baseline DR severity and multiple treatment group comparisons. Eyes with NPDR were categorized into 2 subgroups: (1) mild or moderate NPDR (level 35 or 43); or (2) moderately severe or very severe NPDR (level 47 or 53). Eyes with PDR were categorized into 3 subgroups: (1) mild (level 61), (2) moderate (level 65), or (3) high risk (level 71 or 75). Reported P values and 95% CIs were adjusted using the Hochberg method to account for an overall type 1 error of .05.

Dr Kovach: Individualized therapy is my treatment strategy, and factors such as anticipated visit adherence, cost, systemic health, and visit frequency all play a role in the decision-making process. I recently treated a patient with type 1 diabetes and PDR in the right eye with PRP. She was subsequently unhappy with the resulting peripheral visual field constriction, so when her left eye developed PDR, I treated her with bevacizumab instead of laser. She was able to follow up regularly and was happy with her visual outcome. I believe widespread adoption of anti-VEGF treatment for the purpose of preventing progression will follow longer-term studies that include robust functional vision outcomes. I usually treat PDR with combination therapy, using the laser before anti-VEGF treatment if I have concerns about adherence. If I administer anti-VEGF therapy first and see that the patient is doing well and is able to adhere to follow-up every 1 to 2 months, I might not use PRP at all. The PANORAMA data and subsequent FDA approval of aflibercept for all stages of DR will allow us to treat patients earlier in their disease course. Patients with moderately severe to severe NPDR would likely achieve the most benefit.

Dr Lim: Sharing the decision with the patient is crucial. I give patients—particularly those who are younger, not hospitalized often, and who do not have barriers to monthly visits—a choice of treatment strategies. I counsel them about the risk of endophthalmitis associated with anti-VEGF injections and, conversely, the risk of visual field loss and impaired night vision following laser treatment. I feel that younger patients are more bothered by visual field constriction and impaired night vision. For NPDR, I think that the available population data from Protocol S—and now from PANORAMA—are insufficient at this time for accurately estimating an individual’s risk vs benefit. If a patient with NPDR is progressing rapidly, however, I would consider an anti-VEGF injection because the potential benefit likely outweighs the risk of infection. Longitudinal imaging is critical for following progression of DR and is also helpful as a patient education tool to motivate patients to make lifestyle adjustments and to get their blood glucose under control.

Dr Holekamp: For me, combination therapy using a combination of anti-VEGF therapy and laser is an option that, although off-label, allows for a gentler PRP that might not affect the peripheral vision as severely. I generally recommend this combination treatment for patients with high-risk PDR with or without vitreous hemorrhage, but who do not have traction retinal detachment.

CASE 1. “I SEE SOMETHING RED IN MY LEFT EYE”

FROM THE FILES OF ELEONORA LAD, MD, PhD

A 58-year-old black male was referred for a retinal evaluation. His VA was 20/40 OD (20/25 with a pinhole occluder) and 20/40 OS (20/20 with a pinhole occluder). His medical history was significant for hypertension, hyperlipidemia, and insulin-dependent type 2 diabetes mellitus. His HbA1c was 8.5%. On slit-lamp examination, scattered neovascularization of the iris was observed OU. Color fundus photography and fluorescein angiography revealed neovascularization of the disc (NVD) covering less than one-quarter of the disc area, multiple areas of neovascularization elsewhere (NVE), and a vitreous hemorrhage OS and NVD OD (Figures 3A–3F). Optical coherence tomography revealed subclinical (not center-involving) DME, primarily focal OD and diffuse OS (Figures 3G and 3H).

The patient was diagnosed with high-risk PDR with vitreous hemorrhage. Treatment of the left eye with anti-VEGF therapy was recommended to resolve the vitreous hemorrhage and prevent progression of DR and DME. Although ranibizumab and aflibercept are the only approved treatments for DR with or without DME, the patient was not eligible for Medicare and decided to proceed with a bevacizumab injection (used off label for DR/DME). In the Protocol T study, bevacizumab was compared with ranibizumab and aflibercept, and similar outcomes were observed for DR improvement among treatment groups at 2 years.19 Thus, it is reasonable to try bevacizumab if the patient cannot access an on-label treatment. It should be noted, however, that use of bevacizumab is off-label, and its use to treat DR without DME is not directly supported by clinical trial data at this time.

In the next few months, PRP was completed OU over multiple sessions, and aggressive blood pressure, blood glucose, and lipid control were discussed with both the patient and his primary care physician. After PRP was completed, the patient was lost to follow-up for 2 months. During that time, a large vitreous hemorrhage...
developed in the patient’s opposite (right) eye. At follow-up, continued active neovascularization was observed in the left eye (Figure 4).

The patient was again treated with bevacizumab OD to control the hemorrhage, followed by fill-in PRP OU to prevent further neovascularization. The patient continued to experience vitreous hemorrhage with rebleeds OD and needed 10 bevacizumab injections over 18 months to remain hemorrhage free. The left eye eventually began experiencing a similar series of events and had to be re-treated with bevacizumab 6 times over the next 18 months as the vitreous hemorrhage cleared. Despite the continued hemorrhages, the patient’s vision remained minimally impaired. When the vitreous was clear enough, additional fill-in PRP was applied. The patient ultimately attained 20/20 vision, which was maintained over the next 2 years with periodic anti-VEGF injections, and only regressed NVE was observable on fluorescein angiography during the last visit (Figure 5).

Commentary

Dr Lad: This case illustrates the importance of considering the more severely affected eye when designing preventive treatment strategies for the fellow eye. In my experience, the fellow eye will usually follow a similar disease trajectory unless proactively treated.

Dr Holekamp: What was your rationale for treating this patient’s PDR with frequent anti-VEGF injections vs laser alone?

Dr Lad: The rationale for using anti-VEGF therapy to treat PDR in the absence of clinically significant DME was based on the DRCRnet Protocol S study comparing intravitreal ranibizumab with PRP. In this noninferiority study, eyes with PDR with or without DME were randomized to receive either 1 to 3 sessions of PRP (n = 203) or 0.5 mg of intravitreal ranibizumab alone (n = 191) at baseline and every 4 weeks through 12 weeks, with retreatment after 12 weeks based on investigator assessment. Eyes with DME in either group received ranibizumab. At 2 years, the ranibizumab group gained more letters than did the PRP group (mean change in letter score, 2.8 vs 0.2, respectively; \(P = .11 \) and \(P < .001 \) for the mean area under the curve for letter score). The difference in mean letter change between the groups largely disappeared by 5 years of study (3.1 vs 3.0 letters, respectively), possibly because more...
than half of the eyes in the PRP group were treated with ranibizumab for DME over the course of the study (Figure 6). At 2 years, DR score improved by ≥ 2 steps in 48% of eyes treated with ranibizumab. At 5 years, 46% of ranibizumab-treated eyes had improvement by at least 2 steps, with 10% experiencing complete resolution of DR.

The PRP group had more visual field loss and higher rates of both DME development and vitrectomy than did the ranibizumab group. At 2 years among 242 eyes without baseline DME, the cumulative probability of vision-impairing DME development was 9% vs 28% for the ranibizumab and PRP groups, respectively (P < .001). Fill-in PRP takes a while to take effect. To avoid unwanted consequences between PRP treatments, I added anti-VEGF therapy to this patient’s treatment regimen. The use of combination therapy is supported by the recently published European PROTEUS study, wherein patients with high-risk PDR were randomized to receive either ranibizumab plus PRP (n = 41) or PRP alone (n = 46). Ranibizumab injections were given monthly for the first 3 months, whereas PRP was given in 1 to 3 sessions, 2 ± 1 weeks after the ranibizumab injection. Retreatment was at investigator discretion based on neovascularization. At 1 year, 92.7% of the combination group had reduced total neovascularization vs 70.5% of the PRP monotherapy group (P = .009). Mean best-corrected VA was comparable between the groups.

Another important aspect of treatment for patients with NPDR or PDR is education on modifiable risks. Several health and lifestyle interventions have been associated with a reduced risk of DR progression. Table 2 summarizes findings from selected large randomized trials. Intensive glycemic control reduced risk of DR progression by 71% at 4 years, 51% at 10 years, and 46% at 18 years.

Table 2. Modifiable Risk Factors for DR Progression

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Study</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperglycemia</td>
<td>DCCT/EDIC</td>
<td>Intensive glycemic control reduced risk of DR progression by 71% at 4 years, 51% at 10 years, and 46% at 18 years.</td>
</tr>
<tr>
<td></td>
<td>UKPDS</td>
<td>Relative risk of 2-step progression increased with rising HbA1c</td>
</tr>
<tr>
<td></td>
<td>ACCORD</td>
<td>Rate of progression was 7.3% with intensive control vs 10.4% with standard therapy</td>
</tr>
<tr>
<td>Systemic hypertension</td>
<td>UKPDS</td>
<td>Risk of 2-step progression was reduced by 34%</td>
</tr>
<tr>
<td>Elevated lipids</td>
<td>ACCORD</td>
<td>Rate of progression was 6.5% with fenofibrate vs 10.2% with placebo</td>
</tr>
<tr>
<td></td>
<td>FIELD</td>
<td>Rate of progression was 3.1% with fenofibrate vs 14.8% with placebo</td>
</tr>
<tr>
<td>Smoking</td>
<td>EUROPID IDDM Complications Study</td>
<td>Smoking was associated with early development of microvascular complications</td>
</tr>
<tr>
<td>Body mass index</td>
<td>WESDR</td>
<td>Body mass index (per 4 kg/m²) was associated with progression of DR (hazard ratio 1.16; 95% confidence interval, 1.07–1.26; P < .001)</td>
</tr>
</tbody>
</table>

Abbreviations: ACCORD, Action to Control Cardiovascular Risk in Diabetes; DCCT, Diabetes Control and Complications Trial; DR, diabetic retinopathy; EDIC, Epidemiology of Diabetes Interventions and Complications; FIELD, Fenofibrate Intervention and Event Lowering in Diabetes; IDDM, insulin-dependent diabetes mellitus; UKPDS, United Kingdom Prospective Diabetes Study; WESDR, Wisconsin Epidemiologic Study of Diabetic Retinopathy.

On the basis of the strength of evidence for the association among glycemic index, blood pressure, and serum lipids and DR progression, the American Academy of Ophthalmology and the American Diabetes Association both recommend educating patients on the importance of controlling these systemic risk factors to prevent further progression of DR. Patients with high-risk PDR, with or without vitreous hemorrhage, benefit most from combination therapy of anti-VEGF injections and PRP. It is important to remember and to remind our patients that both eyes are likely to follow a similar fate. Thus, preventive treatment in the less-involved eye should be started earlier rather than later. Motivate your patients to get their blood glucose under control and educate them on modifiable risk factors. A team approach that includes the patient’s family, his/her community, primary care physician, and other medical specialists prevents worsening of the retinopathy ≥ 5 years into the future.

Dr Lim: Having a close one-on-one conversation with patients about their glucose control can be very powerful. At every appointment, I ask my patients what their HbA1c is, understanding that recent holidays or illnesses might cause temporary setbacks, and try to motivate them to do better. The effects of retina specialists counseling patients about diabetes control has been studied by the DRCRnet; regretfully, it did not find an effect. In practice, however, I have found at that approximately one-quarter of my patients respond to our discussions and are able to significantly reduce their HbA1c.

Dr Kovach: Also, including the patient’s family in counseling can help the entire family move toward a healthier lifestyle. Reviewing images with the patient is helpful as well. Good communication among the retina specialist, endocrinologist, and primary care physician is important. Giving educational seminars in the community can also raise awareness of the importance of glycemic control for prevention of vision impairment at both the patient and primary care levels.

Dr Holekamp: I completely agree, but I think it is also important to note that counseling does not change our treatment plan. For all forms of DR, we are treating damage caused by hyperglycemia that started 5 to 10 years ago; thus, I often motivate my patients by encouraging them to get their HbA1c under control so I do not have to treat their retinopathy 5 or 10 years into the future.

On the basis of the strength of evidence for the association among glycemic index, blood pressure, and serum lipids and DR progression, the American Academy of Ophthalmology and the American Diabetes Association both recommend educating patients on the importance of controlling these systemic risk factors to prevent further progression of DR.

“Having a close one-on-one conversation with patients about their glucose control can be very powerful. At every appointment, I ask my patients what their HbA1c is, understanding that recent holidays or illnesses might cause temporary setbacks, and try to motivate them to do better.”

— JENNIFER L. LIM, MD

Take-Home Points

- Patients with high-risk PDR, with or without vitreous hemorrhage, benefit most from combination therapy of anti-VEGF injections and PRP
- It is important to remember and to remind our patients that both eyes are likely to follow a similar fate. Thus, preventive treatment in the less-involved eye should be started earlier rather than later.
- Motivate your patients to get their blood glucose under control and educate them on modifiable risk factors. A team approach that includes the patient’s family, his/her community, primary care physician, and other medical specialists prevents worsening of the retinopathy ≥ 5 years into the future.

CASE 2: SEVERE NONPROLIFERATIVE DIABETIC RETINOPATHY — TO TREAT OR NOT TO TREAT?

FROM THE FILES OF JACLYN L. KOVACH, MD

A 62-year-old female with type 2 diabetes mellitus presented with decreased vision OU. Her HbA1c was 75%, and her medical history was significant for hypertension. Her VA was 20/150 OD and 20/25 OS. Her right eye had PDR, with a relatively dense vitreous hemorrhage. Her left eye showed severe NPDR, no neovascularization of the iris, and normal pressure (Figure 7). Optical coherence tomography showed no CI-DME.
Cons

- Pain (7.4% and 3.7%, respectively).
- 8 weeks were conjunctival hemorrhage (11.9% and 17.2%, observed in patients receiving aflibercept every 16 weeks and every 8 weeks).

8 weeks were followed through 100 weeks. The most common adverse events were conjunctival hemorrhage (11.9% and 17.2%, respectively), vitreous floaters (4.4% and 9.0%, respectively), and eye pain (7.4% and 3.7%, respectively).

Dr Lim: A number needed to treat of 3 is actually good. This is comparable to what we see for the treatment of age-related macular degeneration and vein occlusion with anti-VEGF therapy.

Dr Kovach: Should we be treating patients with severe NPDR such as that in the left eye in this case? Over the past 6 to 7 years, a wealth of information has been accumulating that supports treatment with anti-VEGF therapy to regress DR. Data from the VIVID/VISTA, RISE/RIDE, and DRCRnet Protocol S, T, and I studies show that approximately 25% to 50% of eyes treated with aflibercept or ranibizumab had at least a 2-step improvement in DR severity. A post hoc analysis of the VIVID and VISTA trials found that improvement was greatest among eyes with a Diabetic Retinopathy Severity Scale score of 47 or 53 at baseline. A similar analysis of the RISE and RIDE trials found that the greatest improvement was observed among eyes with moderately severe or severe NPDR at baseline.

PANORAMA is the first large prospective randomized trial since ETDRS to study treatment of moderately severe to severe NPDR specifically without CI-DME. The 52-week results were presented at the Angiogenesis, Exudation, and Degeneration 2019 meeting. In this ongoing phase 3 trial, participants were randomized to receive either sham injection (n = 133), 2 mg of intravitreal aflibercept every 16 weeks (n = 135), or 2 mg of intravitreal aflibercept every 8 weeks (n = 134). Patients receiving aflibercept every 16 weeks had 6 planned injections in the first year, whereas those receiving aflibercept every 8 weeks had 9 planned injections. The primary end point was met, with 79.9%, 65.2%, and 15.0% of patients receiving aflibercept every 16 weeks had 9 planned injections. The primary end point was met, with 79.9%, 65.2%, and 15.0% of patients receiving aflibercept every 16 weeks, aflibercept every 8 weeks, and sham, respectively, achieving a ≥ 2-step improvement in their Diabetic Retinopathy Severity Scale score at week 52 (P < 0.001 for both treatment groups vs sham) (Figure 8). Key secondary end points included the proportion of patients developing PDR or anterior segment neovascularization (ASNV) and the proportion of patients developing CI-DME. Significantly more patients in the sham group developed PDR/ASNV or CI-DME than in the aflibercept-treated groups (40.6% vs 9.6% for aflibercept every 16 weeks and 11.2% for aflibercept every 8 weeks; P < 0.0003 for both comparisons).

According to this analysis, the number needed to treat is 3 to prevent 1 prespecified PDR/ASNV or CI-DME event. Participants will be followed through 100 weeks. The most common adverse events observed in patients receiving aflibercept every 16 weeks and every 8 weeks were conjunctival hemorrhage (11.9% and 17.2%, respectively), vitreous floaters (4.4% and 9.0%, respectively), and eye pain (7.4% and 3.7%, respectively).

Dr Lim: A number needed to treat of 3 is actually good. This is comparable to what we see for the treatment of age-related macular degeneration and vein occlusion with anti-VEGF therapy.

In this case, however, we are preventing the development of PDR as opposed to treating a patient with visual loss. It is important to remember that these patients are asymptomatic, and if NPDR progresses to PDR, we can usually successfully treat them with anti-VEGF therapy or PRP.

Dr Holekamp: Throughout all of medicine, a number needed to treat of 3 is considered very reasonable. The PANORAMA study gives us unique data regarding both regression of DR and failure to progress to vision-threatening complications. Does the treatment burden have any effect on your interpretation of the applicability of these results?

Dr Kovach: What is the optimal number of injections? I think this is based on what the patient’s goals are and what he/she is willing to tolerate.

Dr Lim: That is a very good point. The patients in this study had good vision at baseline, so you are proposing risking infection at least 6 to 9 times over the course of a year without any VA gain.

Dr Lad: What if we could get the DR to regress by 2 stages and then go back to observation only? This might alleviate the treatment burden and associated risk.

Dr Kovach: The treatment burden will also likely depend on the patient’s glycemic control and on our clinics’ ability to accommodate an increased patient load. Further study will be needed to determine the exact best practices for treating NPDR in the real world. In this vein, the DRCRnet Protocol W study is assessing outcomes of prompt treatment of severe NPDR (without CI-DME) with aflibercept vs observation only.

Enrollment is complete at 328 participants, and the planned study completion is 2022.

Synthesizing the data that we have discussed, there are several pros and cons for treatment of NPDR without CI-DME, as summarized in Table 3.

Table 3. Comparison of Pros and Cons Associated With Treatment of NPDR Without CI-DME

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Potential regression and modulation of disease course</td>
<td>- 59% of sham-treated patients in PANORAMA did not develop PDR or CI-DME at 1 year (P < 0.0001 for both comparisons).</td>
</tr>
</tbody>
</table>
| - Young, working patient population would greatly benefit from vision loss prevention | - Intravitreal injections carry risks, including:
| - Endophthalmitis | - Retinal detachment |
| - Increased intraocular pressure | - Lack of data demonstrating functional outcomes with treatment |

Abbreviations: CI-DME, center-involving diabetic macular edema; NPDR, nonproliferative diabetic retinopathy; PDR, proliferative diabetic retinopathy.
Several unanswered questions regarding treatment of NPDR without CI-DME also exist, including the following:

- Should all patients with moderately severe or severe NPDR be treated? How often?
- Do all anti-VEGF agents provide similar efficacy for DR regression and vision loss prevention?
- How can we best communicate the benefits of vision loss prevention to our patients?

Dr Holekamp: I think that communication of the benefits of vision loss prevention will be the toughest aspect of treating NPDR without CI-DME. It is so hard for patients to appreciate what they have not yet lost.

Dr Kovach: We know that effective communication improves treatment adherence, but there are many barriers to effective communication. Patient demographics, functional health literacy, and even depression all can affect the quality of communication and should be considered when tailoring an educational approach. I think our ongoing challenge is to keep educating our patients by showing them their retinal images and by reinforcing what they have to lose by allowing their vision to deteriorate.

Dr Lim: Patients will develop their own evaluation of the risk-benefit ratio. Some will choose to accept the risks, and some will decide not to. This case provides an example of such shared decision making in action.

Take-Home Points

- With the treatment of advanced NPDR, the ability to provide disease modulation and regression would minimize or completely avert the severe, often irreversible, effects on vision in a patient population for which there are currently no approved or generally accepted therapies
- Future studies will hopefully provide guidance regarding patient selection and timing of treatment and also data that include functional vision outcomes
- The key to maximizing visual outcomes in patients with diabetes going forward will involve augmenting screening efforts, implementing earlier treatment strategies, and communicating effectively

CASE 3: PROLIFERATIVE DIABETIC RETINOPATHY – BALANCING TREATMENT AND OBSERVATION
FROM THE FILES OF JENNIFER I. LIM, MD

A 53-year-old female with a 15-year history of diabetes presented in 2016 with fluctuating vision OU. She was taking insulin until her diabetologist placed her on liraglutide instead of insulin following achievement of reasonable glucose control. Relevant findings are as follows:

- HbA1c: 8.6%
- VA: 20/20 OU
- -3.75 + 1.00 x 165 OD; -3.50 + 1.25 x 10 OS
- Moderate NPDR
- No clinically significant DME OS

She was counseled to aim for an HbA1c of 7%, and instructed to follow up. She returned 10 months later complaining of mild visual changes. At that time, her vision was 20/25 OD and 20/20 OS, and refraction was comparable to that of her initial visit, with a +1 nuclear sclerotic cataract OU. Her HbA1c was 8.3%. The DME had worsened but was still not affecting the center of the macula. Neovascularization was detected in the optic disc OU (Figure 9).

Because the patient had developed PDR at this point, both laser and anti-VEGF treatment options were presented, along with their possible side effects. The patient chose to begin treatment with anti-VEGF injections OU. At her follow-up visit approximately 1 month later, the neovascularization and DME had completely resolved.

Dr Holekamp: I think you have done an excellent job of managing this patient rather than just managing the disease. You did not give her a series of injections just because Protocol S did. You learned that this patient has DR that recurs with a periodicity, but that she is motivated...

Figure 9. Color fundus photographs (A and B), optical coherence tomography images (C and D), and optical coherence tomography angiography images (E and F) of the right and left eye, respectively, of the patient presented in Case 3

Commentary

Dr Lim: What would you do now? Would you follow Protocol S and treat with a series of 3 monthly anti-VEGF injections? Would you combine injections with PRP, or would you observe?

Dr Kovach: I would observe this patient closely, given her excellent vision and lack of DME and neovascularization.

Dr Lad: I would observe with close follow-up.

Dr Lim: I observed, and followed up 2 months later. In the interim, the patient was able to reduce her HbA1c to 7.4%; no edema or PDR was seen on that follow-up examination. I observed again, and asked her to return in another 8 weeks. She returned 12 weeks later, and in the intervening time, developed recurrent PDR OU despite having maintained her HbA1c at 7.5%. Visual acuity was 20/25 OD and 20/20 OS; it was 6 months after the first anti-VEGF injection had been given. At this visit, she received an anti-VEGF injection OU, but at the subsequent follow-up visit 4 weeks later, her PDR had not regressed as it had after her first set of injections. I therefore re-treated with anti-VEGF therapy (3 total in 7 months). She responded well, with regression of NVD within another month. Two months later, there was a tiny spot of NVD in the right eye. Three months later (6 months after her last anti-VEGF treatment), NVD had increased and was associated with mild vitreous hemorrhage OD despite her having a VA of 20/20 OU. She received an anti-VEGF injection OD (fourth received OD in 14 months). Over the next 6 months, I injected her with anti-VEGF therapy only when recurrent NVD was observed, at approximately 4 to 6 months. Although the patient might have benefitted from adjunctive laser therapy, she declined the treatment because she highly valued her peripheral vision. She returns at intervals of 3 months.

Dr Holekamp: I would observe with close follow-up.
to control her blood glucose and adhere to a follow-up schedule that she helped develop.

Dr Lim: Using anti-VEGF treatment alone for PDR has the advantage of avoiding the peripheral vision loss associated with laser treatment. In my practice, however, very few patients complain of visual field or VA loss after laser. Although this patient was very happy with anti-VEGF treatment alone, there are some downsides to this approach. When injections are missed, rapid progression can result, with vision-threatening vitreous hemorrhage or retinal detachment. Other considerations that should factor into a decision of whether to pursue anti-VEGF therapy for PDR include the following:

- Severity of diabetes (control of HbA1c)
- Transportation to the clinic
- Employment status
- Risk of endophthalmitis

Take-Home Points

- Anti-VEGF treatment results in regression of neovascularization in patients with diabetes and PDR
- Maintain careful follow-up while observing and during treatment of active disease
- Personalize your approach to determining the periodicity of the recurrent PDR
- Carefully coach the patient with regard to risk factors for diabetic control
- Consider adding laser treatment if issues of noncompilance (due to illness or lack of follow-up) arise
- Optical coherence tomography angiography can be helpful in following the NVD and documenting regression or recurrence

CASE 4: A LESSON IN PERSEVERANCE

FROM THE FILES OF NANCY M. HOLEKAMP, MD

A 48-year-old black male with a 10-year history of poorly controlled diabetes presented with blurry vision that affected his ability to work. He also had a history of hypertension and high cholesterol. His HbA1c was 12.4% at presentation. His right eye was 20/30, with severe, high-risk PDR and extensive peripheral nonperfusion, NVD, NVE, and minimal DME (Figure 10). His left eye was 20/125, with some macular edema. Given that it was 2013, prior to Protocol S, PRP was recommended for each eye. The patient received PRP in the right eye but failed to return for PRP in the left eye for 13 months.

[Figure 10. (A and B) Seven-field color fundus photographs of the right and left eye, respectively, of the patient described in Case 4. Early (C) and late (D) fluorescein angiograms of the right eye. (E) Optical coherence tomography of the left eye]

Commentary

Dr Holekamp: Clearly, I failed to communicate the importance of treatment at the severe PDR stage. Maybe I should have talked to him more about this and his risk of progression and vision loss using numerical data. I did show him his retinal images, but it was just not enough. The fact that he presented to me so late in the disease course and with such a high HbA1c should have been red flags for possible nonadherence to follow-up.

Dr Lim: It is good that you did the PRP in 1 sitting. Many physicians prefer to spread PRP out among sessions because of the discomfort some patients experience with thermal laser. Newer laser systems use shorter pulse durations, which translates to less discomfort.4,41 The DRCRnet also showed that there was no difference at 4 months postlaser in terms of macular edema or outcome when PRP was performed in 1 sitting or in more than 1 sitting.42 I prefer to do the PRP in 1 sitting; that way I can be sure the treatment is complete and not have to worry about noncompliance for a follow-up visit to finish treatment.

Dr Holekamp: When he did return, this patient had severe, untreated neovascular glaucoma in the left eye and ended up permanently losing sight in that eye. We discussed treatment for his right eye, which had developed some fibrosis of the neovascular tissue because of the laser, yet he still had proliferative disease. To reinforce the seriousness of the situation, I asked him to cover his remaining eye and walk out of the room. This ended up being a pivotal moment for the patient. He subsequently became fully compliant with anti-VEGF injections—first with bevacizumab, and then with aflibercept. I prefer on-label injections for monocular patients. Frequent monthly injections were required to control small hemorrhages that would occur upon interval extension. He also received laser treatment. His VA remained at 20/25 until he passed away in early 2019.

Take-Home Points

- Patients with DR/DME are often challenged to adhere to lifestyle and treatment recommendations, which is why they have developed DR/DME
- Acknowledge this challenge right up front and spend extra time at each visit building a physician-patient relationship that will lend itself to improved adherence
- Treat monocular patients with extra special care; consider using on-label, FDA–approved drugs for these patients
- Although frequent anti-VEGF injections are burdensome for patients, blindness will always be a far greater burden
- Patients at risk for blindness will come back monthly if needed to prevent progression of disease

SUMMARY

- Studies, including the ongoing PANORAMA study, show that patients with moderately severe and severe NPDR are at a high risk of developing PDR or CH-DME within 1 year if left untreated
- NPDR might respond better to anti-VEGF therapy than does PDR, and treatment at this stage might avert more vision-threatening complications
- Several studies, including PANORAMA and DRCRnet Protocol S, demonstrate that treatment of NPDR and PDR with anti-VEGF therapy can reverse DR and prevent development of vision-threatening complications
- Anti-VEGF intravitreal injection and PRP are both efficacious treatments for DR, but side effects such as infection risk (for anti-VEGF therapy) and loss of peripheral and night vision with the risk of developing DME (for PRP) should be discussed with patients as part of a shared decision-making approach
- Treatment selection for DR should be individualized, taking into account patient- and treatment-specific factors that might affect adherence, severity of disease, and the disease trajectory of the fellow eye

Complete the CME Post Test online at https://tinyurl.com/preventvisionloss
1. A 52-year-old patient with a 10-year history of type 2 diabetes mellitus presents with mild visual impairment. Relevant clinical findings are as follows:
 - HbA1c: 9.0%
 - VA: 20/25 OD, 20/20 OS
 - Non–high-risk NVD OD
 - Severe NPDR OS

 The patient is still working and is highly motivated to resolve ocular diabetes complications. According to the findings from Protocol S, what would be the best treatment for this patient to avoid development of DME and need for vitrectomy?
 a. Observation only
 b. Intensive glucose control
 c. Panretinal photocoagulation
 d. Anti-VEGF injection
 e. b and c
 f. b and d

2. A patient with moderately severe NPDR OD and severe NPDR OS without DME presents for follow-up. According to the findings of the PANORAMA study, what is the approximate probability that this patient will develop PDR or CI-DME in the next year without treatment?
 a. 20%
 b. 30%
 c. 40%
 d. 50%

3. Which of the following anti-VEGF agents has been shown to reduce the likelihood of developing CI-DME by approximately 30% after 1 year of treatment?
 a. Aflibercept
 b. Bevacizumab
 c. Ranibizumab

4. In which clinical scenario do data from the PROTEUS study support combination PRP/ranibizumab treatment over PRP monotherapy?
 a. Moderate NPDR OU
 b. Severe NPDR OD, moderately severe NPDR OS
 c. High-risk PDR OU
 d. Mild PDR OD, severe NPDR OS

5. Analysis of the VIVID and VISTA trials suggests that DR at the __________ stage responds the most robustly to treatment with anti-VEGF therapy.
 a. Mild NPDR
 b. Moderate NPDR
 c. Severe NPDR
 d. PDR

6. The American Academy of Ophthalmology and American Diabetes Association both recommend counseling patients on the following modifiable risk factors for progression of DR:
 a. Glycemic index, blood pressure, and serum lipids
 b. Body mass index, glycemic index, and smoking
 c. Blood pressure, serum lipids, and smoking
 d. Glycemic index, blood pressure, and sleep apnea

7. A 56-year-old truck driver with a 15-year history of type 2 diabetes mellitus whose HbA1c is 11.8% and who has moderate PDR OD and high-risk PDR OS would likely benefit most from treatment with:
 a. PRP monotherapy OU in 4 sittings
 b. Ranibizumab monotherapy OS
 c. Combination PRP/ranibizumab therapy