Cataract Case of the Month CME Series

This Month’s Case

A Patient With Mixed Aqueous Deficiency/Evaporative Dry Eye Disease

LEARNING METHOD AND MEDIUM

This educational activity consists of a case discussion and study questions. The participant should, in order, read the learning objectives contained at the beginning of the case discussion, answer all questions in the post-test, and complete the Activity Evaluation/Credit Request form. To receive credit for this activity, please visit http://www.tinyurl.com/EyeOnCataract-1 and follow the instructions provided on the post test and Activity Evaluation/Credit Request form. This educational activity should take a maximum of 0.75 hour to complete.

CONTENT SOURCE

This continuing medical education (CME) activity captures content from an expert roundtable discussion held in San Diego, California, on April 16, 2015.

ACTIVITY DESCRIPTION

Cataract surgery is the most commonly performed surgery among adults in the United States, and the number of patients undergoing this procedure continues to be increasing. For patients who are identified as candidates for cataract surgery, optimization of the ocular surface is critical for obtaining optimal patient outcomes. There are a host of new tools that can help cataract surgeons with their preoperative evaluations. Among these are several tests that are useful adjuncts for diagnosing dry eye/meibomian gland dysfunction. The purpose of this activity is to update ophthalmologists on recent advances in the care of patients with cataracts.

TARGET AUDIENCE

This activity is intended for ophthalmologists.

LEARNING OBJECTIVES

Upon completion of this activity, participants will be better able to:

1. Manage preoperative ocular surface conditions with potential to affect surgical outcomes in patients with cataracts.
2. Describe the benefits of new diagnostic technologies for dry eye disease that might improve cataract surgery outcomes.

ACCREDITATION STATEMENT

This activity has been planned and implemented in accordance with the accreditation requirements and policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint providership of New York Eye and Ear Infirmary of Mount Sinai and MedEdicus LLC. The New York Eye and Ear Infirmary of Mount Sinai is accredited by the ACCME to provide continuing medical education for physicians.

In July 2013, the Accreditation Council for Continuing Medical Education (ACCME) awarded New York Eye and Ear Infirmary of Mount Sinai “Accreditation with Commendation,” for six years as a provider of continuing medical education for physicians.

This CME activity includes discussion of unlabeled and/or investigative uses of drugs. Please refer to the official prescribing information for each drug discussed in this activity for FDA-approved dosing, uses of drugs. Please refer to the official prescribing information for each drug discussed in this activity for FDA-approved dosing, uses of drugs. Please refer to the official prescribing information for each drug discussed in this activity for FDA-approved dosing, uses of drugs. Please refer to the official prescribing information for each drug discussed in this activity for FDA-approved dosing, uses of drugs. Please refer to the official prescribing information for each drug discussed in this activity for FDA-approved dosing, uses of drugs.

AMIA CREDIT DESIGNATION STATEMENT

The New York Eye and Ear Infirmary of Mount Sinai designates this enduring material for a maximum of 0.75 AMA PRA Category 1 Credit™. Physicians should only claim credit commensurate with the extent of their participation in the activity.

GRANTOR STATEMENT

This continuing medical education activity is supported through an unrestricted educational grant from bausch + Lomb Incorporated.

This continuing medical education activity is supported through an unrestricted educational grant from Alcon; and Allergan; Abbott Medical Optics; Bausch + Lomb; and MedEdicus LLC.

NEW YORK EYE AND EAR INFIRMARY OF MOUNT SINAI PEFER REVIEW DISCLOSURE

Joseph F. Panarelli, MD, has no relevant commercial relationships to disclose.

EDITORIAL SUPPORT DISCLOSURES

Cheryl Guttman (writer); Cynthia Tomalay, MD, MBA, CHCP; Kimberly Carver, CHCP; Barbara Lyon; Diane Mickele, PhD, and Barbara Lyon have no relevant commercial disclosures to disclose.

DISCLOSURE ATTESTATION

The contributing individuals listed above have attested to the following:

1) that the relationships/affiliations noted will not bias or otherwise influence their involvement in this activity;
2) that practice recommendations given relevant to the companies with whom they have relationships/affiliations will be supported by the best available evidence or, absent evidence, will be consistent with generally accepted medical practice; and
3) that all reasonable clinical alternatives will be discussed when making practice recommendations.

OFF-LABEL DISCUSSION

This CME activity includes discussion of unlabeled and/or investigative uses of drugs. Please refer to the official prescribing information for each drug discussed in this activity for FDA-approved dosing, indications, and warnings.

FOR DIGITAL EDITIONS

System Requirements:

To view this online activity, please ensure the computer you are using meets the following requirements:

- Supported Browsers: Windows or Macintosh
- Media Viewing Requirements: Flash Player or Adobe Reader
- Supported Browsers: Microsoft Internet Explorer, Firefox, Google Chrome, Safari, and Opera
- A good internet connection

New York Eye and Ear Infirmary of Mount Sinai
Privacy & Confidentiality Policies
http://www.nyee.edu/health-professionals/cme/enduring-activities

CME Provider Contact Information

For questions about this activity, call 212-979-4383.

TO OBTAIN AMA PRA CATEGORY 1 CREDIT™

For this activity, you will receive your certificate immediately. You must score 70% or higher to receive credit for this activity, and may take the test up to 2 times. Upon registering and successfully completing the post test, your certificate will be made available online and you can print it or file it. There are no fees for participating in and receiving CME credit for this activity.

DISCLAIMER

The views and opinions expressed in this educational activity are those of the faculty and do not necessarily represent the views of New York Eye and Ear Infirmary of Mount Sinai, MedEdicus LLC, Bausch + Lomb Incorporated, or Ophthalmology Times.

Jointly provided by New York Eye and Ear Infirmary of Mount Sinai and MedEdicus LLC.

NEW YORK EYE AND EAR INFIRMARY OF MOUNT SINAI

This CME activity is copyrighted to MedEdicus LLC ©2015. All rights reserved.
A 62-year-old white female presents with complaints of decreased vision, visual fluctuation, glare, and foreign body sensation. Her medical history includes rheumatoid arthritis, xerostomia, epistaxis, recurrent bronchitis, and a history of pancreatitis. Slit-lamp examination reveals inspissated secretions in the meibomian glands and waxy meibum on expression (Figure 1). There is moderate fluorescein staining of the central cornea (Figure 2), lissamine green staining of the inferior and central ocular surface, and a 1+ nuclear sclerotic cataract.

Tear osmolarity is 334 mOsms/L OD and 318 mOsms/L OS. Keratometry (K) readings on topography are 44.75/46.25 D @ 45° OD and 44.50/46.00 D @ 135° OS. A blood sample is obtained to screen for Sjögren syndrome and is positive for antinuclear antibody (ANA), rheumatoid factor (RF), salivary protein 1 (SP-1), carbonic anhydrase 6 (CA6), and parotid secretory protein (PSP; it is negative for Sjögren-specific antibody A (SSA) and Sjögren-specific antibody B (SSB). The patient is started on treatment for meibomian gland dysfunction (MGD)/aqueous deficiency dry eye disease, including oral doxycycline, oral omega-3 supplementation, lid hygiene, topical cyclosporine, nonpreserved artificial tears, and loteprednol etabonate gel. Topography is repeated 5 weeks later and K readings are now 44.50/45.25 D @ 32° OD and 44.75/45.50 @ 120° OS.

OVERVIEW

Dry eye disease is extremely common in the cataract surgery population and is important to detect and manage preoperatively because it has the potential to affect the accuracy of the keratometry readings used for intraocular lens power calculations and the visual outcome after surgery. In the Prospective Health Assessment of Cataract Patients’ Ocular Surface (PHACO) study, which evaluated 136 patients presenting for cataract surgery at 9 centers across the United States, tear break-up time (TBUT) of ≤5 seconds was present in approximately two-thirds of patients, approximately three-fourths of eyes were positive for fluorescein corneal staining, and hal showed central corneal staining, while approximately 1 in 5 patients had an abnormal result of ≤5 mm on Schirmer testing with anesthesia. Less than one-fourth of patients in the study, however, had ever been diagnosed with dry eye.

The patient in this case presented with symptoms that are associated with dry eye disease—decreased vision, visual fluctuation, foreign body sensation. Other common symptoms include stinging, burning, itching, dryness, and eye fatigue. Not all patients with dry eye disease, however, spontaneously report such symptoms or even relate certain symptoms to dry eye, resulting in a poor correlation between the severity of signs and symptoms. For example, some patients with severe dry eye may be hypesthetic and so have few subjective complaints, whereas patients who are earlier in the disease process may have more subjective issues because of enhanced sensitivity of the ocular surface. Thus, patients with significant complaints may appear to have only mild disease on objective testing while those with more advanced disease may actually be asymptomatic. Clinicians clearly need to be proactive in conducting a proper diagnostic examination.

DRY EYE DIAGNOSIS

Several new technologies have emerged as point-of-care tests to improve the accuracy of the diagnosis of dry eye disease. Opinions vary, however, regarding their role in clinical practice. Both aqueous deficiency and evaporative dry eye disease lead to a more concentrated tear film (hyperosmolarity) that places stress on the corneal epithelium and conjunctiva. On the basis of a study by Lemp and colleagues and according to the device manufacturer, tear film osmolarity testing performed using a 50-nL sample is considered diagnostic for dry eye disease if the result is >308 mOsms/L in either eye, or if there is an intereye difference of >8 mOsms/L. Tear film hyperosmolarity is a defining feature of dry eye disease and considered a core mechanism leading to ocular surface inflammation [International Dry Eye WorkShop (DEWS) definition and classification], yet such testing remains underutilized as a diagnostic tool.

Visit http://www.tinyurl.com/EyeOnCataract-1 for online testing and instant CME certificate or scan QR code
Sjögren Syndrome

Jay S. Pepose, MD, PhD

Sjögren syndrome is a multisystem autoimmune disorder that can lead to significant morbidity and even mortality. It ranks as one of the most common autoimmune diseases, and yet the diagnosis is often overlooked. Left untreated, patients with Sjögren syndrome are at risk for developing a number of serious sequelae, including vision loss, joint destruction, pulmonary fibrosis, interstitial nephritis, vasculitis, and lymphoma, among other complications. Considering that dry eye is often one of the earliest signs of Sjögren syndrome, opthalmologists should maintain a high index of suspicion for the condition because they have the opportunity to establish a timely diagnosis.

Key symptoms include recalcitrant joint pain, swelling and stiffness, dyspnea, dry cough, moderate to severe keratitis sicca, xerostomia, swollen salivary glands, excessive gingivitis and dental caries, skin rashes and dry skin, vaginal dryness, and profound fatigue. The manifestations are best addressed by multidisciplinary ophthalmologic, rheumatologic, and dental specialty care.

A high index of suspicion of Sjögren syndrome should be maintained for any patient with significant ocular surface disease, particularly women aged older than 40 years with dry mouth and other findings. Testing ordered proactively to confirm the diagnosis will enable appropriate treatment and tailoring of further studies.

Nevertheless, because tear film osmolarity has been shown to correlate better with dry eye severity than do other commonly used measures, including the Schirmer test, vital dye staining, TBUT, and the Ocular Surface Disease Index, and because the testing is very quick, easy to administer, patient friendly, cost-effective, and well-tolerated, tear film osmolarity is a useful tool for determining dry eye severity as well as for monitoring the effectiveness of therapy.

Immunoassay of matrix metalloproteinase-9 (MMP-9) in a tear sample is another in-office test for diagnosing dry eye. MMP-9 is a marker of inflammation that is elevated in the tears of patients with dry eye; the assay is considered positive when the concentration of MMP-9 is \(\geq 40 \text{ng/mL} \). However, a negative result does not necessarily rule out dry eye disease, and the test result may be falsely negative if the sampling technique was inadequate. Furthermore, a positive result is not necessarily specific for dry eye disease because MMP-9 may also be elevated in individuals with recurrent corneal erosions or post-LASIK complications such as epithelial ingrowth, corneal ulceration, conjunctivochalasis, inflammation, and other tissue damage.

There is evidence that the level of tear MMP-9 activity correlates with severity of various signs and symptoms of dry eye, but the in-office test is only weakly quantitative because it does not provide an exact measurement of MMP-9 concentration. Rather, the test is interpreted as positive if a red line appears on the applicator used to collect the tear sample; and, the intensity of the red color increases with increasing MMP-9 concentration. For that reason, MMP-9 measurement is not ideally suited for following response to therapy. In addition, sample acquisition can be uncomfortable for patients with dry eye disease or blepharospasm.

Another instrument developed as an adjunct for diagnosing dry eye disease quantitates the thickness of the tear lipid layer using interferometry. In addition, it reports blink rate and allows identification of incomplete blinks. In its latest iteration, the device generates images of the meibomian glands using high-resolution infrared meibography (qualitative assessment of meibomian gland architecture and atrophy). There is, however, a lack of evidence demonstrating that tear film evaporation varies depending on the thickness of the lipid layer, and there is no normative database to use for interpreting blink rate data. The ability of this system to identify an incomplete blink seems to have clinical utility, particularly as an instructional tool for patients in that it enables the clinician to demonstrate the problem when it exists and helps encourage adherence to recommendations to “think blink.”

A diagnostic kit for Sjögren syndrome is now available for in-office use. Blood is drawn either by venipuncture or by finger prick and applied onto a collection card. But some clinicians have found it challenging to acquire a sufficient blood sample using a finger prick and, rather than drawing blood by venipuncture, are giving patients a requisition for testing to be done at an outside laboratory. The test may be useful for earlier diagnosis of Sjögren syndrome because it measures the traditional autoantibodies that are diagnostic for the syndrome (SSA, SSB, ANA, and RF) plus 3 novel autoantibodies (SP-1, CA6, and PSP) that occur earlier in the course of the disease. Earlier diagnosis of Sjögren syndrome is important for allowing affected patients to receive timely referral for rheumatologic care and initiation of treatment that can limit disease progression and permanent tissue damage (see Sidebar: Sjögren Syndrome).

TREATMENT OF DRY EYE DISEASE

For patients who are identified as candidates for cataract surgery because of visually significant lens opacification, optimization of the ocular surface is critical for obtaining reliable preoperative keratometry reading, for optimizing postoperative healing, and for maximizing postoperative vision. Dry eye disease should, therefore, be diagnosed and treated prior to surgery in order to allow determination of how much the reduced vision is due to the ocular surface irregularity vs the cataract itself.

Meibomian gland dysfunction is the most common cause of dry eye disease, but the majority of patients probably have a combination of MGD and aqueous deficiency disease. Therefore, treatment should address both etiologies.

Artificial tears are a cornerstone in the management of all dry eye disease, and lid hygiene to relieve meibomian gland obstruction using heat and mechanical massage is a mainstay for treating MGD.
Patients need to be educated, however, in the proper technique for lid hygiene because efficacy depends on applying sufficient heat for a sufficient duration. A washcloth wrung out after being soaked in hot water will not retain heat for a long enough period of time to be effective and also risks microbial contamination. A useful low-tech and inexpensive strategy employs a clean sock filled with uncooked rice that is heated in the microwave for 30 seconds. Also, a variety of eye masks and goggles developed specifically for eyelid warming is commercially available. Either of these techniques—using homemade or purchased products—should be applied for a minimum of 10 to 15 minutes, once a day.

There are also devices for in-office lid treatments that deliver heat alone or thermal pulsation therapy. Preliminary evidence suggests that intense pulsed light therapy in conjunction with meibomian gland expression may be useful for treating dry eye disease associated with MGD.14

Oral doxycycline can be beneficial for management of MGD because it has anti-inflammatory properties and inhibits lipase activity and MMPs.15 There are no guidelines on dosing, although subantimicrobial doses are likely sufficient and might be better tolerated than the higher doses used to treat infection. The Eye on Cataract faculty consider a daily dose of doxycycline in the range of 20 to 100 mg/d reasonable for treating patients with MGD, perhaps taking into account body weight when choosing a specific dose for an individual patient. Topical azithromycin also can be used off-label for treatment of MGD.15

Oral omega fatty acids also have anti-inflammatory activity and may improve the quality of meibum secretions.13 There is evidence from randomized, double-blind/double-masked controlled trials showing improvements in the signs and symptoms of dry eye/MGD in patients treated with certain nutritional supplements containing omega-3 and/or omega-6 fatty acids.15-18

The numerous omega fatty acid supplements available commercially can create confusion for consumers. Patients should be advised to look for mercury-free products. A daily dose of up to 4000 mg may be recommended, depending on patient tolerance and disease severity.

According to the severity of disease and the specific diagnosis, topical anti-inflammatory treatment with a corticosteroid and cyclosporine A also may be indicated.19-21

DECIDING IF A PATIENT IS READY FOR SURGERY

Once told they need cataract surgery, some patients are eager for the procedure to be scheduled as soon as possible. Always counsel cataract patients with dry eye disease about the importance of first optimizing the ocular surface, explaining that the duration of treatment needed in order to obtain reliable keratometry readings is variable because it depends on the etiology of the problem, its severity, the aggressiveness of the intervention, and patient compliance with treatment. Thus, ocular surface rehabilitation may require anywhere from 1 to 6 months, encompassing 1 to 4 extra office visits before final biometry can be obtained.

Tear film instability and punctate keratopathy are the 2 most common ocular surface findings that cause fluctuating and unpredictable topography and keratometry data. Tear film instability is most often related to dry eye whereas there are many possible causes for punctate keratopathy. Anecdotally, when aggressive treatment is initiated with a topical corticosteroid and cyclosporine, punctate keratopathy may improve faster than tear film instability, and tear film osmolarity may also decrease.

Regardless of the initial findings, documenting stability with 2 consecutive keratometry readings is helpful for determining that a patient is ready for surgery.

SUMMARY

Dry eye disease is a common occurrence in the cataract surgery population and is underdiagnosed. Meibomian gland dysfunction is the most common cause of dry eye, but its etiology can be multifactorial, and it is especially critical to make the diagnosis of Sjögren syndrome when it exists. Cataract surgeons must be proactive in identifying dry eye in cataract surgery patients and in optimizing the ocular surface prior to undertaking cataract extraction. New tools to help with diagnosis and new therapeutic interventions for disease management are emerging. Further, it is incumbent on ophthalmologists to make certain that patients with dry eye understand that they have a chronic disease that will necessitate continued treatment, even after their cataract surgery.